Pacing Strategy in Men's 400 m Hurdles Accounting for Temporal and Spatial Characteristics of Elite Athletes

by
Janusz Iskra ${ }^{1}$, Aleksander Matusiński², Mitsuo Otsuka³, Kenny J Guex ${ }^{4}, 5$

Abstract

The final result in a 400 m hurdles race $(400 \mathrm{mH})$ is relative to the motor preparation, technique of clearing hurdles as well as the adopted strategy of the race, including temporal aspects (split times in particular parts of the race) and spatial elements (the number of strides taken between subsequent hurdles). The objective of the study was to identify an optimal strategy for the 400 mH race, including the stride pattern and split times. Data employed for this study were derived from results of 273 races held during the men's finals of international events (Olympic Games, World and European Championships) held from 1968 to 2015. To determine the strategies in the race, three main hurdle sections were identified $-1-4 H, 4-7 H$ and $7-10 H$. In each part, the fast (best results), average and slow (worst results) performing groups of hurdlers were distinguished. The analysis of adopted strategies was carried out taking into account 26 variables (main, basic, temporal and spatial). Basic statistical data, correlations and analysis of variance (ANOVA) were used. Results highlight the use of a variety of strategies, of which selection depends, among others, on body composition and the level of motor abilities (speed, speed endurance and explosive strength), as well as hurdling technique. Especially, the endurance strategy appears to be the most effective one, as it is a characteristic of best performances of many hurdlers. The analysis demonstrates that at the highest sports level the strategy of 400 m hurdles should be analyzed individually.

Key words: 400 m hurdle strategy, typology of hurdlers, athletics, pace.

Introduction

The 400 mH race is one of the toughest track events and is referred to as the man-killer event (Quercetani, 2009). The final result in this hurdling race is determined by motor abilities (speed, strength and endurance) and the technique of clearing hurdles. The specific ability, referred to as hurdle rhythm, also plays a significant role and relies on a pacing rhythm that includes a specific number of strides between hurdles (12-16) taking into account time variables (Hiserman, 2011; Iskra, 1991, 2012). The basic skill in the 400 mH race is associated with maintaining
a minimal loss of speed in the race despite significant fatigue resulting from the glycolytic effort (Goupta et al., 1999; Zouhal et al., 2010). Besides speed and endurance, preparation for the 400 mH demands strength training with various resistance exercises (Guex, 2012; Reis et al., 2011). The basic training task for the athlete involves the ability to maintain an adequate step pattern, i.e., the number of strides offering minimal pace losses when subsequent sections are cleared between hurdles. This approach to the selection of abilities in athletics mainly applies to anthropometric

[^0]characteristics, which determine results in the flat 400 m race (Iskra and Coh, 2011).

To this date, several analyses of strategies in track races involving distances from 400 m to the marathon were performed (Hanley and Hettinga, 2018; Hannon and Thomas, 2011; Renfree et al., 2014). The analysis of this issue was limited to the search for spilt times measured between subsequent race sections and their relevance to the final result. However, temporal characteristics in 400 mH are still to be examined. Attempts to explain the 400 mH strategy have so far been focused on the pace (split times, touchdown times) and the number of steps (stride pattern). This type of research has been conducted since the 1960s and includes mainly groups of hurdlers taking part in championship events (Behm, 2016; Ditroilo and Marini, 2000; Glad and Brüggemann, 1990).

Therefore, the aim of this study was to identify different types of men's 400 mH pacing strategies and to determine the best anthropometric, spatial and temporal characteristics of elite athletes.

Methods

Two hundred seventy-three (273) individual men's 400 mH results were considered including the finals of the largest athletics competitions in the period from 1968 to 2015. The following were considered: 12 Olympic finals (1968-2012), 14 world championship finals (19832015), 12 European championship finals (19712014), as well as Olympic Trials held in 2008. All competitions were held on synthetic tracks and the final results were recorded with electronic timing, with accuracy of 0.01 s . In total, split times from 39 events were subjected to the analysis from a period lasting a total of 48 years. The data included final runs with the participation of eight athletes.

The results of hurdlers who (not seeing any chance of success) gave up at the finish (= the result deviated from the 2SD value) were not considered (the exclusion criterion). Due to the lack of data, in some cases only results of medal winners (i.e., places 1-3) were used in the analysis.

Details of the performance level, body composition and technical preparation of the considered hurdlers are presented in Table 1.

Methods applied in the assessment of spatiotemporal variables

Data used in the spatio-temporal analysis originate from a variety of sources published between 1968 and 2017 (including Behm, 2016; Ditroilo and Marini, 2000; Glad and Brüggemann, 1990; Hommel and Koszewski, 1999; Lopez del Amo et al., 2012; Morita and Igarashi, 1992; Moriorka, 1997).

A significant amount of data was obtained from Behm's compilation work (2016), in which the author summed up a dozen papers published between 1995-2011 in the Revue de l'Amicale des Entraîneurs Français d'Athlétisme. Baseline body variables (BH, BW) were obtained from data presented in the annual publications "The Association of Track and Field Statisticians" (ATFS) - "The International Track and Field Annual" from 1968-2019. The analysis of time variables was made following various methods - some of them were described in by Iskra and Coh (2011). The most commonly used methods for measuring "touchdown times" in the 400 mH race at championship events applied motion analysis using video software (including Dartfish Software). The reliability of such data sources was confirmed by Greene et al. (2008) and O'Donoghue (2015). The analysis of the so-called "pacing rhythm" (= stride pattern) was performed using the cinematographic method.

Selection of variables

Selected time variables related to "split times" applied to determine the times of particular parts of the race: run-in, times between particular hurdles, and the time of the final phase of the race. Basic data on spatial variables ("stride pattern") referred to data regarding the same sections of the 400 mH race.

The identification of chosen sections in the 400 mH distance takes into account its various aspects. For some researchers, the "mathematical and geometric" specificity which includes identification of split times in terms of the first and the second part of the race or four 100 m sections in the race with two straightaways and two curves, proves the most significant source of information. For others, the most important aspects include physiological (variations in speed due to fatigue) and biomechanical aspects (variations in hurdling rhythm taking into account the number of steps and changes in the
lead leg) (Iskra and Coh, 2011). The identification of three parts of the race for the purpose of this analysis was based on previous studies related to the hurdle strategy and physiological (Gupta et al., 1999; Zauhal et al., 2010) as well as training aspects (Iskra 1991, 2012; Hiserman 2011; McFarlane 2004) of 400 mH races.

From the scientific and practical point of view, the most rational approach assumes the identification of three equal (105 m) sections of the race between hurdles ($1-4,4-7,7-10$) coupled with individual consideration of the run-in (45 m) and the finish (40 m). This classification provided grounds for the subsequent comparison of the specific sections of the race as well as the use of information derived from empirical analysis in the process of developing hurdle technique (Iskra, 2012). Division of the distance into specific parts is presented in Table 2.

The analysis of the 400 mH running strategy involved the ratio of the split times recorded in three identified sections of the whole race - T1-4, \%T4-7 and \%T7-10, expressed in a percentage scale. Separate areas of analysis were identified in each section of the race, taking into account the strategies applied in the race, including a "fast" - i.e. the characteristic marked by an athlete reaching high running speed in the specific sections of the race ("speed" hurdler), "average" - the ability to maintain moderate running speed ("technique" hurdler) and "slow" - characterized by slow running speed in the specific sections of the distance - "endurance" hurdler (Table 3). An equal number ($\mathrm{n}=91$) of hurdlers was assigned to the fast, average and slow groups in each section of the race.

The search for factors determining sports success in hurdling can be based on the selection of different variables (Guex, 2012; Iskra and Coh, 2011). In total, 26 variables, divided into main (2), basic (6), temporal (11) and spatial (7) were applied with the purpose of searching for details regarding the types of strategies followed in the 400 mH races.

The "stride pattern" (according to previous papers) has been identified as the number of strides, without hurdle clearance. Its characteristics are given in the Appendix.

Statistical analysis

Microsoft Excel 2010 was used for data collection and processing. The statistical analysis
(Statistica 2010) was used to calculate the absolute and relative values of the variables (mean, SD, min-max and, occasionally, skewness and kurtosis). The Pearson correlation analysis was applied to establish relationships between variables. The analysis of variance (ANOVA) was employed to compare the three different running strategies (in three parts of the distance). Statistically significant effects were further examined with the post-hoc Tuckey's HSD test. The levels of statistical significance for all analyses were set at $p<0.05, p<0.01$ and $p<0.001$.

Results

The results of the correlation analysis are presented in Table 4. The differences between the hurdlers in the three parts of the race are presented in Tables 5-7.

First part of the run (\%T1-4)

The results of the analysis of correlation (Table 6) demonstrate a faster initial section of the race in older hurdlers ($p<0.05$), as well as taller and heavier ones ($p<0.01$) and technically less advanced (IT $-p<0.05$); these results correlate significantly with the personal record in the 400 m hurdle race ($p<0.01$). A faster initial section of the race resulted in a significant decrease of speed at the $7^{\text {th }}$ hurdle $(\mathrm{r}(\mathrm{T} 7-10)=0.50, \mathrm{r}(10-\mathrm{F})=0.51 ; p<$ 0.001). Running speed losses were significant in its final part $(\mathrm{r}(\mathrm{T} 7-10-\mathrm{T} 1-4)=0.92 ; p<0.001)$. Hurdlers who performed well in terms of the fast initial section of the race (= "speed" hurdlers) applied a 13 -step rhythm at the start of the race, and then changed to 15 strides later in the distance. The greatest changes in the stride pattern (N7-10-N1-4) were found in this group. Use of the "speed" strategy lengthened the split time in the section of the final race (from the $7^{\text {th }}$ hurdle) (Table 5).

Second part of the run (\%T4-7)

Body composition and the stride pattern did not distinguish this group from other types of hurdlers. The best performance in terms of "going into the curve" (T4-7) was a manifestation of good technical preparation, including the ability to change the step rhythm in successive parts of the race. For athletes in this group, the first section of the race was more significant $(\mathrm{r}(\mathrm{T} 1-4)=-0.22$; $\mathrm{r}(\% \mathrm{~T} 1-4)=-0.28 ; p<0.001)$. In the last section of the race (T7-10), speed decreased significantly (Table 6). Adverse changes mainly concerned the
third section of the race (T7-10, \%T7-10 and T7-10-T4-7) (Table 6). In the group of "technique" hurdlers, the adopted stride pattern did not play a significant role.

Third part of the run (\%T7-10)

The best performance (also relatively) evaluated by the time of the section between the $7^{\text {th }}$ and $10^{\text {th }}$ hurdles applied to elite athletes (time: $48.49 \pm 0.77 \mathrm{~s}, \mathrm{r}(400 \mathrm{H})=-0.12 ; p<0.05)$. Body height of hurdlers who adopted the "endurance" strategy was shorter $(\mathrm{r}(\mathrm{BH})=0.23 ; p<0.001)$. In comparison to other groups (i.e. ones that followed the "speed" and "technique" strategies), athletes in this group did not demonstrate the
same split time in the initial section of the race ($p<$ $0.01-0.001$), but reached the shortest split in the final section (T10-F). In all parts of the race, "endurance" hurdlers had the lowest decreases in terms of the racing speed $(\mathrm{r}(\% \mathrm{~T} 7-10-\mathrm{T} 1-4)=-0.90$; $p<0.001$) (Table 4). Differences between successive parts of the race did not exceed $1.70 \pm$ 0.29 s (Table 7). Top hurdlers preferred slight changes in the stride pattern until the end of the distance. Despite using a greater number of steps taken at the start (N1-4 and N4-7), athletes in this group used the same number of steps as other groups of athletes to clear the final section between hurdles (N7-10; $p=\mathrm{NS}$) (Table 7).

Table 1
Characteristics of hurdlers ($n=273$)

Variable	Unit	Mean	SD	Min-max	Skewness	Kurtosis
T400H	s	48.64	0.75	$46.78-50.46$	0.26	-0.50
T1-10	s	37.29	0.62	$35.66-39.17$	0.21	-0.34
Age	years	26.13	3.72	$18-37$	0.48	-0.30
BH	cm	185.28	5.94	$170-198$	-0.24	-0.04
BW	kg	76.34	5.71	$60-93$	0.10	0.16
BMI	$\mathrm{kg} / \mathrm{m}^{2}$	22.22	1.10	$19.33-25.31$	-0.12	-0.14
PB400	s	45.94	0.82	$44.05-48.04$	-0.04	-0.23
TI	s	2.67	0.82	$0.18-5.26$	0.03	0.40
T0-1	s	6.00	0.13	$5.60-6.42$	-0.16	0.25
T1-4	s	11.44	0.29	$10.76-12.70$	0.50	0.89
T4-7	s	12.32	0.25	$11.61-13.18$	0.18	0.35
T7-10	s	13.54	0.31	$12.84-14.40$	0.27	-0.16
T10-F	s	5.34	0.29	$4.70-6.80$	1.20	3.14
\%T1-4	$\%$	23.52	0.50	$22.02-25.26$	0.15	0.71
\%T4-7	$\%$	25.30	0.37	$24.14-26.60$	0.05	0.29
\%T7-10	$\%$	27.82	0.43	$26.69-29.53$	0.20	0.32

Table 2
Sections of the 400 m hurdle race (according to the aim of the study).

Part of the race	Distance (m)	Distance identification	Type of hurdler
S-1	0-45 (45)	Running acceleration	
1-4	45-150	Hurdle speed (= "speed" part of the run) -	"Speed" hurdler
	(105)	Following the clearing of the first hurdle, the racing speed is constant over the first straight (hurdles 2 and 3), and then it decreases	
4-7	150-255 (105)	Hurdle technique (rhythm) (= "technique" part of the run). Most of hurdlers are inclined to change the lead leg, which is treacherous during a race on a curve	"Technique" hurdler
7-10	255-360 (105)	Hurdle endurance (= "endurance" part of the run). In the conditions of significant glycolytic fatigue, three hurdles are cleared in the preparation for the finish part.	"Endurance" hurdler
10-F	360-400 (40)	Finish - running endurance	

Table. 3
Hurdling strategies in three specific sections of the race.

Section of the race	Total group ($\mathrm{n}=273$)		Various hurdling strategies		
			"Speed"	"Technique"	"Endurance"
	Split time (s)	\%	\%	\%	\%
1-4H	11.44 (0.13)	23.52 (0.50)	22.02-23.311	23.32-23.72	23.73-25.26
4-7H	12.32 (0.25)	25.30 (0.37)	24.14-25.16 ${ }^{2}$	25.16-25.45	25.46-26.60
7-10H	13.54 (0.31)	27.82 (0.43)	26.69-27.62 ${ }^{3}$	27.63-27.97	27.97-29.53

Table 4

Correlation analysis of three running strategies with selected 400 m hurdle variables.

Variable	Strategy		
	\%T1-4	\%T4-7	\%T7-10
T400H	NS	NS	-.12*
T1-10	NS	-.23 ***	NS
Age	.15*	NS	NS
BH	.18**	NS	-. 23 ***
BW	.17**	NS	-.17**
BMI	NS	NS	NS
PB400	-.18**	NS	.13*
TI	. 26 ***	NS	$-.24 * * *$
T0-1	-. 14^{*}	NS	. 21 ***
T1-4	-.79***	-. $22^{* * *}$. $48^{* * *}$
T4-7	-.13*	-. 67 ***	.18**
T7-10	. 50 ***	. $28^{* * *}$	$-.75^{* * *}$
T10-F	. $51{ }^{* * *}$. $54{ }^{* * *}$	$-.28^{* * *}$
T4-7-T1-4	. 76 ***	$-.41^{* * *}$	$-.36{ }^{* * *}$
T7-10-T4-7	. $58{ }^{* * *}$. $80^{* * *}$	$-.87^{* * *}$
T7-10-T1-4	. 92 ***	. $36{ }^{* * *}$	$-.90^{* * *}$
\%T1-4	-	$-.28 * * *$. $66{ }^{* * *}$
\%T4-7	$-.27^{* * *}$	-	. 39 ***
\%T7-10	. $66^{* * *}$.39***	-
N1-4	-.37***	NS	. $33^{* * *}$
N4-7	$-.24^{* * *}$	NS	.27***
N7-10	NS	NS	NS
N4-7-N1-4	. $24^{* * *}$	NS	NS
N7-10-N4-7	. 26 ***	.14*	-.29***
N7-10-N1-4	. $34^{* * *}$	NS	-.29***
Type of hurdler	",Speed" hurdler	"Technique" hurdler	„Endurance" Hurdler

${ }^{*} p \leq 0.05,{ }^{* *} p \leq 0.01$

Table 5
Analysis of variance (ANOVA) of the strategy of the first (\%T1-4, ,speed") part of the 400 m hurdle race.

	Group ($\mathrm{x} \pm$ SD)				Post-hoc test		
Variable	A „Fast"	B „Average"	$\begin{gathered} \text { C } \\ \text {,,Slow" } \end{gathered}$	F value	A-B	B-C	A-C

		1. Main variables		
T400H (s)	$48.69(0.74)$	$48.67(0.78)$	$48.55(0.72)$	1.73^{NS}
T1-10 (s)	$37.20(0.55)$	$37.34(0.66)$	$37.34(0.65)$	1.37^{NS}
		2. Basic variables		
Age (year)	$26.50(3.85)$	$26.72(3.85)$	$25.20(3.31)$	4.26^{*}
BH (cm)	$185.42(6.11)$	$185.92(5.62)$	$184.51(6.07)$	1.83^{NS}
BW (kg)	$76.82(5.68)$	$76.84(5.59)$	$75.36(5.81)$	1.67^{NS}
BMI (kg/m²)	$22.33(1.09)$	$22.22(1.16)$	$22.12(1.03)$	0.43^{NS}
PB400m (s)	$45.76(0.83)$	$45.95(0.85)$	$46.13(0.75)$	4.37^{*}
TI (s)	$2.93(0.78)$	$2.72(0.85)$	$2.42(0.75)$	$10.21^{* * *}$

3. Temporal variables (s)

T0-1	$5.97(0.12)$	$6.01(0.13)$	$6.00(0.13)$	$5.155^{* *}$	$* *$	$*$	$*$
T1-4	$11.21(0.20)$	$11.44(0.19)$	$11.68(0.25)$	$101.04^{* * *}$	$* * *$	$* * *$	$* * *$
T4-7	$12.26(0.20)$	$12.36(0.27)$	$12.33(0.27)$	3.249^{*}	$*$		
T7-10	$13.71(0.27)$	$13.53(0.28)$	$13.36(0.28)$	$34.209^{* * *}$	$* * *$	$* * *$	$* * *$
T10-F	$5.54(0.29)$	$5.33(0.24)$	$5.20(0.22)$	$38.671^{* * *}$	$* * *$	$* *$	$* * *$

T4-7-T1-4	$1.05(0.18)$	$0.92(0.17)$	$0.65(0.23)$	$99.294^{* * *}$	${ }^{* * *}$	${ }^{* * *}$	${ }^{* * *}$
T7-10-T4-7	$1.45(0.28)$	$1.17(0.28)$	$1.03(0.29)$	$47.599^{* * *}$	${ }^{* * *}$	${ }^{* *}$	${ }^{* * *}$
T7-10-T1-4	$2.50(0.28)$	$2.09(0.19)$	$1.68(0.27)$	$231.77^{* * *}$	${ }^{* * *}$	${ }^{* * *}$	${ }^{* * *}$
\%T1-4	$23.00(0.29)$	$23.50(0.12)$	$24.05(0.32)$	$365.65^{* * *}$	$* * *$	$* * *$	$* * *$
\%T4-7	$25.15(0.33)$	$25.38(0.37)$	$25.36(0.37)$	$9.576^{* * *}$	$* * *$	$* * *$	
$\%$ T7-10	$28.13(0.39)$	$27.80(0.32)$	$27.53(0.36)$	$68.322^{* * *}$	$* * *$	$* * *$	

4. Spatial variables (number of strides)

N1-10	$123.77(4.24)$	$123.12(4.3)$	$125.43(5.44)$	$5.870^{* *}$		$*$	$* *$
N1-4	$39.33(1.38)$	$39.65(1.52)$	$40.50(2.14)$	$12.167^{* * *}$		$* *$	$* * *$
N4-7	$40.71(1.56)$	$40.48(1.57)$	$41.29(2.01)$	$5.850^{* *}$			
N7-10	$43.73(1.80)$	$43.07(1.73)$	$43.64(1.83)$	2.756 NS			
N4-7-N1-4	$1.38(1.04)$	$0.83(0.96)$	$0.79(0.92)$	$10.789^{* * *}$	$* * *$		
N7-10-N4-7	$3.02(1.18)$	$2.59(1.26)$	$2.35(1.49)$	$5.810^{* *}$		$* * *$	
N7-10-N1-4	$4.40(1.49)$	$3.42(1.64)$	$3.14(1.84)$	$13.830^{* * *}$	$* * *$	$* *$	
N-N			$* *$				

*** $p<0.001$, ** $p<0.01,{ }^{*} p<0.05$

Table 6 Analysis of variance (ANOVA) of the strategy of the second (\%T4-7, \qquad ,technique") part of the 400 m hurdle race.							
Variable	Group ($\mathrm{x} \pm$ SD)			F value	Post-hoc test		
	A „Fast"	B „Average"	C „Slow"		A-B	B-C	A-C
1. Main variables							
T400H (s)	48.70 (0.74)	48.61 (0.73)	48.61 (0.76)	$0.110^{\text {NS }}$			
T1-10 (s)	37.16 (0.60)	37.28 (0.59)	37.44 (0.64)	6.437**			**
2. Basic variables							
Age (year)	26.26 (3.21)	26.35 (4.01)	25.79 (3.90)	$0.808^{\text {NS }}$			
BH (cm)	186.00 (3.21)	184.48 (6.3)	185.36 (5.86)	0.969 Ns			
BW (kg)	76.37 (5.21)	75.91 (6.05)	76.71 (5.86)	0.260 Ns			
BMI (kg/m²)	22.07 (1.20)	22.28 (1.01)	22.31 (1.06)	1.102 NS			
PB400m (s)	45.88 (0.84)	46.03 (0.78)	45.91 (0.85)	0.711 Ns			
TI (s)	2.78 (0.82)	2.58 (0.79)	2.70 (0.84)	1.305 NS			
3. Temporal variables (s)							
T0-1	6.02 (0.12)	5.98 (0.13)	5.99 (0.13)	$1.618{ }^{\text {NS }}$			
T1-4	11.37 (0.26)	11.43 (0.30)	11.53 (0.29)	8.041***			***
T4-7	12.14 (0.20)	12.31 (0.20)	12.50 (0.21)	69.336***	***	***	***
T7-10	13.65 (0.31)	13.54 (0.31)	13.42 (0.28)	10.296***		*	***
T10-F	5.52 (0.34)	5.35 (0.20)	5.17 (0.18)	41.376***	***	***	***
T4-7-T1-4	0.77 (0.26)	0.91 (0.25)	0.97 (0.23)	14.466***	*	*	***
T7-10-T4-7	1.51 (0.23)	1.23 (0.23)	0.92 (0.22)	145.45***	***	***	***
T7-10-T1-4	2.28 (0.39)	2.14 (0.42)	1.89 (0.34)	20.733***	**	***	***
T1-4\%	23.34 (0.50)	23.52 (0.51)	23.70 (0.430	12.683***	*	*	***
T4-7\%	24.90 (0.20)	25.30 (0.09)	25.70 (0.21)	$469.78^{* * *}$	***	***	***
T7-10\%	28.01 (0.41)	27.84 (0.44)	27.60 (0.35)	$22.863^{* * *}$	*	***	***
4. Spatial variables (number of strides)							
N1-10	123.49 (4.45)	124.89 (4.8)	124.05 (4.97)	$1.908^{\text {NS }}$			
N1-4	39.56 (1.54)	40.08 (1.89)	39.85 (1.86)	1.954 NS			
N4-7	40.53 (1.58)	41.03 (1.83)	40.93 (1.81)	2.223 NS			
N7-10	43.40 (1.92)	43.78 (1.66)	43.27 (1.83)	1.763 NS			
N4-7-N1-4	0.97 (1.00)	0.95 (1.07)	1.08 (0.96)	0.559 Ns			
N7-10-N4-7	2.87 (3.37)	2.75 (1.23)	2.34 (1.38)	3.312*			*
N7-10-N1-4	3.84 (1.75)	3.70 (1.65)	3.42 (1.84)	0.944 NS			

Table 7

Analysis of variance (ANOVA) of the strategy of the third (\%T7-10, „endurance") part of the 400 m hurdle race.

	Group ($\mathrm{x} \pm$ SD)			Post-hoc test			
Variable	A „Fast"	B „Average"	C „Slow"	F value	A-B	B-C	A-C

1. Main variables					
T400H (s)	48.49 (0.77)	48.65 (0.71)	48.77 (0.75)	3.528*	*
T1-10 (s)	37.19 (0.61)	37.33 (0.63)	37.35 (0.62)	2.477 Ns	
2. Basic variables					
Age (year)	26.37 (3.79)	25.92 (3.54)	26.10 (3.84)	$0.568{ }^{\text {NS }}$	
BH (cm)	183.61 (5.92)	185.33(6.25)	186.88 (5.21)	6.563**	**
BW (kg)	75.21 (5.72)	76.07 (6.04)	77.71 (5.10)	4.105*	*
BMI (kg/m²)	22.29 (1.06)	22.13 (1.16)	22.24 (1.09)	0.599 NS	
PB400m (s)	45.96 (0.68)	46.02 (0.90)	45.85 (0.86)	1.010 NS	
TI (s)	2.53 (0.77)	2.63 (0.82)	2.92 (0.84)	6.068**	**

3. Temporal variables (s)

T0-1	6.03 (0.13)	6.00 (0.12)	5.97 (0.12)	4.139*			**
T1-4	11.57 (0.27)	11.45 (0.25)	11.32 (0.30)	19.137***	*	**	***
T4-7	12.34 (0.27)	12.34 (0.23)	12.25 (0.25)	2.408 Ns			
T7-10	13.27 (0.22)	13.54 (0.20)	13.81 (0.25)	123.59***	***	***	***
T10-F	5.28 (0.29)	5.32 (0.29)	5.44 (0.27)	$7.141^{* * *}$		*	***
T4-7-T1-4	0.77 (0.26)	0.89 (0.24)	0.93 (0.26)	$12.216^{* * *}$	**		***
T7-10-T4-7	0.93 (0.24)	1.20 (0.18)	1.56 (0.22)	186.44***	***	***	***
T7-10-T1-4	1.70 (0.29)	2.09 (0.20)	2.49 (0.30)	195.17***	***	***	***
T1-4\%	23.84 (0.45)	23.53 (0.37)	23.20 (0.46)	55.317***	***	***	**
T4-7\%	25.43 (0.39)	25.35 (0.33)	25.12 (0.30)	18.122***		***	***
T7-10\%	27.35 (0.21)	27.81 (0.10)	28.29 (0.25)	474.53***	***	***	**

	4. Spatial variables (number of strides)					
N1-10	125.41 (5.78)	123.79(4.57)	123.20 (3.49)	$5.071^{* * *}$	*	**
N1-4	40.51 (2.27)	39.66 (1.61)	39.32 (1.04)	$11.460^{* * *}$	**	***
N4-7	41.35 (2.06)	40.68 (1.72)	40.43 (1.26)	$6.000^{* *}$	*	***
N7-10	43.55 (1.98)	43.45 (1.78)	43.45 (1.69)	$0.114{ }^{\text {NS }}$		
N4-7-N1-4	0.84 (0.91)	1.02 (1.18)	1.11 (0.91)	2.635 NS		
N7-10-N4-7	2.20 (1.49)	2.77 (1.14)	3.02 (1.26)	$8.128^{* * *}$	**	***
N7-10-N1-4	3.04 (1.88)	3.79 (1.62)	4.09 (1.57)	9.947***	**	***

Discussion

The traditions marked by the search for the optimal strategy in hurdle races in terms of the final result started as early as the 1960s. Cooper (1966), the silver medalist of the 1964 Games, identifies the so-called "coasts" (instants marked by stabilization of the pace) and "kicks" (rapid acceleration) as elements that play decisive roles in the competition (Cooper, 1966). After the introduction of synthetic tracks, basic elements of temporal structure ("split times") and spatial structure ("stride pattern") provided interesting insights for scientific analysis (Ditroilo and Marini, 2000; Guex 2012; Otsuka and Isaka, 2019). Changes in stride variables in different parts of the distance impact the strategy of hurdle races (Martens et al., 2017).

The history of the 400 mH competition demonstrates that it is difficult to identify the most effective strategy among the variety of existing tactics. The final events held during the Olympic Games and World Championships indicate that victory is determined by various strategies, i.e., from maintaining high speeds throughout the entire race through sustainable speed strategies ("technique" hurdler), to waiting for the final stage (by "endurance" hurdlers) (Behm, 2016; Quercetani 2009).

Among the current theories applied to short distance running, various aspects were considered, including total strategy, as well as equal or variable stride pattern strategies (Hannon and Thomas, 2011). In the context of the 400 m hurdle race, none of these theoretical solutions can be used. Biomechanical (acceleration) aspects indicate that regardless of the level of performance, there are three stages in the 400 mH race: an increase in racing speed (up to the 2 nd or 3 rd hurdle), relative maintenance (hurdles 2-4) and a constant, systematic decrease of speed (from the 3rd-4th to the final hurdle) (Ditroilo and Marini, 2001; Yasui et al., 1996). Such a phase-based approach to the time taken to complete subsequent parts of the 400 mH race is complemented by changes in the spatial structure (stride pattern) in subsequent "rhythmic units" (35 m between hurdles). Some of the researchers consider that one of the significant aspects of the 400 mH races includes running the distance from the start to the first hurdle (Ozaki et al., 2019).

A vast majority of the reports on the
analysis (temporal and spatial) of the 400 mH apply a holistic approach to the problem, without analyzing the types and particular sections of the race. Yasui et al. (1996) and Lopez del Amo et al. (2012) divide the distance into 3 parts, i.e., 1-3H, 47 H and $7-10 \mathrm{H}$. This classification was supported by earlier metabolic and biomechanical analysis and observations performed by coaches.

Correlation and variance analyses have demonstrated not only a great diversity of running strategies, but also variable determinants which influenced them.

The adoption of a fast-running strategy from the beginning of the race has been confirmed in runners who applied the so-called "double cut down", i.e., changed the stride pattern from 13 to 15 steps (Hiserman, 2011; Iskra 2008). A faster start of the race results in significant losses of running speed in the latter stages of the distance (T7-10-T1-4 $=2.50 \mathrm{~s}$ for the "speed" group and only 1.68 s for the "endurance" group). In fact, Otsuka and Isaka (2019) reported that a positive relationship was observed between the split-times during the first- and second-halves of the race ($\mathrm{r}=$ 0.63). The main reason seems to be associated with the need to abruptly shorten the step length when changing the stride pattern from 13 to 15 strides. This style of running was common in the 1960s and 1970s (Quercetani, 2009).

The results of the assessment of hurdling performance based on three parts of the race demonstrate significant differences in the adopted running plan. The faster initial part ($1-4 \mathrm{H}$) offers the athletes the capability to successfully continue in the middle part of the distance, however, a consequence of such a "running plan" is the rapid deterioration of speed in the later part of the race. Coaches report this situation in the following manner - "if you're using up too much energy in the early part of the race, the later stages of the race will be dramatic" (McGill, 2007).

In the category of hurdlers who constitute the so-called "technique" group, there are tall and slim hurdlers who adopt a long stride pattern throughout the middle part of the distance. This section of the race is sometimes treacherous, as running speed always decreases, and some runners, using a favorable wind, try to run too fast and they finally are not able to maintain this high speed in the last straight (Queen, 2010).

Perhaps the common viewpoint of coaching represents the misunderstanding of the importance of this section of the race. In the training process, the so-called "short rhythm endurance" (running distances up to 150-200 m) is considered a relatively simple, yet effective aspect of training (Iskra, 2012; McFarlane 2004).

The data derived from biochemical tests indicate that the 400 mH distance is a typical glycolytic run. After 300 m , the concentration of LA (lactate) reaches over $13 \mathrm{mmol} / \mathrm{l}$ (Kłapcińska et al., 2001), thus glycolysis provides most of the ATP for muscular contractions in the 400 mH race. High post-exercise lactate concentrations (above $15 \mathrm{mmol} / \mathrm{l}$) in the 400/400m hurdle races were also reported by Goupta et al. (1999) and Zouchal et al. (2010). In this work, the preferred endurance strategy relies on the physiological and biochemical foundations. The final straight plays a decisive role in the ability to maintain a specific stride pattern over a distance of 400 mH . The smallest loss of racing speed in this section could be associated with successful performance.

The majority of reports in this area simplify the problem of the 400 mH strategy into two mathematically equal parts (first $200 \mathrm{~m}+$ the second 200 m part of the race), with an emphasis on time differences between them (Hiserman, 2011; McFarlane 2004). In accordance with such classic designs, this difference in favor of the early half should be as small as possible (around 2.5 s for the best athletes). However, at this level a small difference due to the slow first half is not an alternative at the elite level. This point of view has been confirmed empirically by Guex (2012).

The athletic performance evaluation system applying the standard index (TI) does not always utilize sufficient information. In the "technique" category of athletes, the relation measured by the TI was not observed, however, this group of athletes performed significantly better in terms of split times only between the hurdles (T1-10; $\mathrm{p}=0.01$) (Table 4). The question regarding the results of the "stride pattern" analysis for various types of strategies is largely answered by the presented different running strategies. In previous works, no preferences were established in terms of a specific "stride pattern" (Iskra, 2008). However, the results of previous analysis indicate minimal changes in the number of steps in the final section of the distance (Table 7).

The need to refer to the 13 -step "stride pattern" is most evident among the best hurdlers of 2019 (Karsten Warholm, Rai Benjamin, Abderrahman Samba). In the group of tall hurdlers (187-191) with a slim body ($75-78 \mathrm{~kg}$), a 13-step stride pattern is followed until the end or to the final straight (Matthews, 2019). It has been reported that only several hurdlers in the world maintain the 13-step stride pattern all the way to the finish line (Otsuka and Isaka, 2019).

An approach which involves the identification of three parts of the distance and assigns three strategies to them allows for the analysis of nine specific running plans. For example, the strategy of five world class hurdlers included three parts of the run $(1-4 \mathrm{H}, 4-7 \mathrm{H}$ and $7-$ 10 H) and three strategies ("fast", "average" and "slow") presented below:
1.46 .78 s - "average" + "average" + "fast"
2. 47.18 s - "slow" + "fast" + "fast"
3. 47.25 s - "fast" + "average" + "average"
4.47 .30 s - "slow" + "average" + "fast"
5. 47.46 s - "average" + "fast" + "slow"

Conclusions

1. Three strategies can be identified as a result of the assessment of the distribution of the pace rhythm (temporal structure) and the socalled stride pattern over the 400 mH race: "speed", "technique" and "endurance".
2. There are elite hurdlers who represent each of the strategies, and the selection of a specific strategy depends mainly on predominant motor abilities, technical preparation and anthropometric characteristics of athletes.
3. A too fast pace at the start of the race significantly reduces the stride pattern in its latter stages and reduces performance in the third part of the race. This way of running is preferred by short hurdlers whose pace rhythm includes 14 to 15 steps.
4. The strategy of fast running in the middle section of the distance significantly decreases the racing speed in the final straight (in particular after the final hurdle).
5. Elite hurdlers often choose to follow the endurance strategy. The time differences of individual parts of the race are then small. Runners from this group clear the distance between hurdles in a 13 to 14 step rhythm.
6. The evaluation of different pacing strategies in three parts of the distance in elite hurdlers needs to be studied individually.

References

Behm JJ. Quatrache 400 haies histoire du monde 1900-2016. Mardore: Behm publication; 2016
Cooper J. The Intermediate Hurdles. Specialist Projects. Western Kentucky University; 1966
Ditroilo M, Marini M. Analysis of the race distribution for male 400 m hurdles competing at the 2000 Sydney Olympic Games. New Studies in Athletics, 2000; 3: 15-30
Glad B, Brüggemann G-P. Time analysis of 400 meters hurdles events In: Scientific research project at the Games of the XXIVth Olympiad - Seoul 1988. Biomechanical studies of the sprint, hurdle and jumping events. Monaco: International Athletic Foundation, 1990; 132-175
Greene D, Leyshon W, O'Donoghue PG. Elite male 400 m hurdle tactics are influenced by race leader. In: World Congress of Performance Analysis of Sport. Otto von Guericke University, Magdeburg, 8; 2008
Guex K. Kinematic analysis of the women's 400m hurdles. New Studies in Athletics, 2012; 1-2: 41-51
Gupta S, Goswami A, Mukhopodhayay S. Heart rate and blond lactate in 400 m flat and 400 m hurdles running. A comparative study. Indian Journal of Physiology and Pharmacology 1999; 43: 361-366
Hanley B, Hettinga FJ. Champions are racers, not pacers: an analysis of qualification patterns of Olympic and IAAF World Championships middle distance runners. J Sport Sci, 2018; 36: 2614-2620
Hannon C, Thomas C. Effects of optimal pacing strategies for $400-,-800$ and $1500-\mathrm{m}$ races on the $\mathrm{VO}_{2 \max }$ response. J Sport Sci, 2011: 29: 905-912
Hiserman J. The art of long hurdling. C.S.C.S, Coil Bound; 2011
Hommel H, Koszewski D. Biomechanical Research Project. Athens 1997. 400m Hurdles. Oxford: Meyer \& Meyer Sport; 1999
Iskra J. Endurance in the 400 meters hurdles. New Studies in Athletics, 1991; 2: 43-50
Iskra J. Changes of stride pattern of world class $400-\mathrm{m}$ hurdlers - reasons and consequences. In: International Convention on Science, Education and Medicine in Sport. Beijing: People's Sports Publishing House, 159; 2008
Iskra J. Athlete typology and training strategy in the 400m hurdles. New Studies in Athletics, 2012; 1-2: 27-37
Iskra J, Čoh M. Biomechanical studies on running the 400m hurdles. Hum Mov, 2011; 4: 315-323
Kłapcińska B, Iskra J, Poprzęcki S, Grzesiok K. The effect of sprint (300m) running on plasma lactate, uric acid, creatine kinase and dehydrogenase in competitive hurdlers and untrained men. J Sports Med Phys Fitness, 2001; 41: 306-311
Lopez del Amo JL, Garcia Fresenda A, Cordente Martinez CA, Montoya Vieco A, Gonzalez Miguel P. Anàlisi de l'elecció de la cama d'atac predominant en la prova de 400 metres tanques dels XIII Campionats del Món d'Atletisme Deagu 2011. Educació Fisica i Esports, 2012; 4: 70-77
Martens G, Deflandre D, Schwartz C, Dardenne N, Bury T. J Hum Kinet, 2018; 64: 57-69. DOI: 10.1515/hukin-2017-0184
McFarlane B. The science of hurdling and speed ($5^{\text {th }}$ ed.). Ottawa: Athletics Canada, Minuteman Press; 2004
McGill S. The phases of a 400 meter hurdle race, 2007. Available at: www. hurdlesfirstbeta.com/articles, accessed on 22.02.2020
Moriorka Y. Analysis of the race-patterns of men's 400 M hurdles - the races of the XXVIth Olympiad in Atlanta 1996. In: XVIth International Society of Biomechanics Congress, Universyty of Tokyo. Book of Abstracts, 207; 1997
Morita M, Igarashi K. The case study on the race of top hurdler in the world. The III Championships in Athletics Tokyo 1991. Research Quarterly for Athletics 1992; 11: 2-13
O'Donoghue P. An introduction to performance analysis of sport. Studies in Sports Performance Analysis. Routledge, New York; 2015
Otsuka M, Isaka T. Intra-athlete and Inter-group comparisons: running pace and step characteristics of elite athletes in the 400-m hurdles. Plos One, 2019; 14(3); e0204185, https://doi.org/10.1371/journal.pone. 0204185
Ozaki Y, Ueda T, Fukuda T, Inai T, Kido E, Narisako D. Regulation of Stride Length During the Approach Run in the 400-M Hurdles. J Hum Kinet, 2019; 69: 59-67. DOI: 10.2478/hukin-2019-0019
Quercetani RL. A world history of hurdle and steeplechase racing. Milan: Edit Vallardi; 2004

Quinn MD. External effects in the 400-m hurdles race. J Appl Biomech 2010; 2: 171-179
Reis V, Junior R, Zajac A, Oliveira D. Energy Cost of Resistance Exercises: an Update. J Hum Kinet. Special Issue, 2011; 33-39. DOI: 10.2478/v10078-011-0056-3
Renfree A, Mytton GJ, Skorski S, Gibson AS. Tactical consideration in the middle distance running events at the 2012 Olympic Games: a case study. International Journal of Sports Physiological Performance, 2014; 9: 362-364
Yasui T, Aoyama K, Ogiso K, Asaba K, Ogura Y. The study of the model interval time in 400m hurdle race for men. In: (ed. JM Abrantes) $14^{\text {th }}$ International Symposium on Biomechanics in Sports, 1996; 431-434
Zauhal H, Jabbour G, Jacob C, Duvigneau D, Botcazou M, Abderrahman A, Prioux J, Moussa E. Anaerobic and Aerobic Energy System Contribution to $400-\mathrm{m}$ Flat and $400-\mathrm{m}$ Hurdles Track Running. J Strength Cond Res, 2010; 9: 2309-2315

Corresponding author:

Janusz Iskra

Faculty of Physical Education and Physiotherapy,
Opole University of Technology,
Opole, Poland
Phone: (+48)506 143962
E-mail: j.iskra@awf.katowice.pl

[^0]: ${ }^{1}$ - Opole University of Technology, Faculty of Physical Education and Physiotherapy, Opole, Poland.
 ${ }^{2}$ - Academy of Physical Education, Katowice, Poland.
 ${ }^{3}$ - Ritsumeikan University, Shiga, Japan.
 ${ }^{4}$ - Swiss Athletics, Haus des Sports, Ittigen, Switzerland.
 ${ }^{5}$ - School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland.

